
Petabyte-Scale Row-Level Operations in Data Lakehouses
Anton Okolnychyi∗

Apple
aokolnychyi@apache.org

Chao Sun∗
Apple

sunchao@apache.org

Kazuyuki Tanimura
Apple

ktanimura@apple.com

Russell Spitzer∗
Apple

russellspitzer@apache.org

Ryan Blue†
Tabular

blue@apache.org

Szehon Ho
Apple

szehon_ho@apple.com

Yufei Gu∗
Apple

yufei@apache.org

Vishwanath Lakkundi
Apple

vishwa@apple.com

DB Tsai
Apple

dbtsai@apple.com

ABSTRACT
Data lakehouses combine the almost infinite scale and diverse tool-
ing of a data lake with the reliability and functionality of a data
warehouse. This paper presents extensions that enhance data lake-
houses using Apache Iceberg and Apache Spark with performant
petabyte-scale row-level operations. The framework is capable of
handling both high-density and sparse modifications by either ma-
terializing changes at the file level during writes or producing
equality and position deletes that are lazily merged with existing
data during reads. The paper also outlines essential improvements
in determining and applying row-level changes: eliminating ex-
pensive shuffles with storage-partitioned joins, minimizing write
amplification with runtime filtering, and optimizing the layout of
output data with adaptive writes. Our evaluation demonstrates the
relative strengths and weaknesses of the various materialization
strategies, highlighting the use cases that require each technique.
We also show an order of magnitude improvement in performance
after our enhancements.

PVLDB Reference Format:
Anton Okolnychyi, Chao Sun, Kazuyuki Tanimura, Russell Spitzer, Ryan
Blue, Szehon Ho, Yufei Gu, Vishwanath Lakkundi, and DB Tsai.
Petabyte-Scale Row-Level Operations in Data Lakehouses. PVLDB, 17(12):
4159 - 4172, 2024.
doi:10.14778/3685800.3685834

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/apache/iceberg/pull/10687.

1 INTRODUCTION
In the evolving landscape of data management, data lakes have
become the prevalent solution for storing and analyzing massive
datasets [29]. Technologies such as MapReduce [42] and Apache
∗Work done while at Apple.
†Work done while at Tabular.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685834

Hadoop [1] gained popularity because of the inability of traditional
data warehouses to cope with the size and variety of generated data.
Projects like Apache Hive [56][36] and Apache Spark [58][57][32]
addressed the initial limitations of the Hadoop ecosystem by pro-
viding SQL support, superior performance, and a better user expe-
rience. Even so, early data lakes often prioritized scalability and
fault tolerance over transactional guarantees and ease of use [28].
These trade-offs forced organizations to adopt both data lakes and
data warehouses, requiring data replication, increasing costs, and
creating data silos.

The rise of cloud computing revolutionized these earlier systems
by providing almost infinite decoupled storage and compute [29].
Cloud object stores were able to manage unprecedented volumes
of data but lacked features Hadoop relied on, like atomic renames
and consistent list operations. This caused critical performance
degradation and exacerbated correctness issues in data lakes. Data
warehouses also needed to be redesigned for the cloud, enabling
solutions like Snowflake [40], Redshift [47], and BigQuery [50].
These systems provided scalable and efficient alternatives to tra-
ditional data warehouses, albeit with some limitations. Like their
predecessors, cloud data warehouses relied on proprietary formats
and were not designed for sharing storage, preventing users from
leveraging emerging technologies and confining analytics to the
capabilities of a specific query engine.

Open source data lakes were limited by reliance on Hive as the
de facto standard for managing tables. Hive stored a portion of the
table metadata, such as schema and a list of directories representing
partitions, in a central metastore while using the underlying stor-
age’s list operation to determine what files to read for a query. The
decision to track partitions, instead of individual files, facilitated
scalability but limited functionality [44]. Iceberg [8] was designed
to replace the Hive table format and enable previously impossible
functionality. Iceberg’s design brought data lakes in line with es-
tablished SQL behavior: it incorporated transactional guarantees,
avoided correctness problems, and addressed performance issues in
the cloud. Unlike Hive, Iceberg captured extensive metadata about
each file and defined how to make atomic changes to table state.
These architectural decisions enabled features like ACID transac-
tions, reliable schema evolution, file skipping based on column
statistics [46] [51], time travel, rollback, and hidden partitioning.

https://doi.org/10.14778/3685800.3685834
https://github.com/apache/iceberg/pull/10687
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685834


The advent of Iceberg and other table formats like Delta Lake [31]
brought data warehouse features and guarantees to data lakes,
establishing the data lakehouse architecture [59]. Data lakehouses
combined the reliability and behavior of a data warehouse with the
almost infinite scale and diverse tooling of a data lake. The growing
popularity of this architecture can be attributed to its commitment
to open standards and modularity, permitting concurrent access to
the same table from different query engines without compromising
ACID guarantees or performance.

The ability to modify tables upon ingestion is an integral part
of modern analytics. Efficient row-level DELETE, UPDATE, and
MERGE operations used to be an exclusive feature of data ware-
houses, making the migration to data lakehouses difficult. Use cases
like change data capture, incremental materialized view refresh,
and certain types of slowly changing dimensions often involve
handling not just new records but also updates and deletes. A fre-
quently used approach for handling row-level changes in data lakes
was to replace entire table partitions, forcing data engineers to
develop complex and error-prone data transformation pipelines.
These pipelines involved querying affected table partitions, merging
their state with incoming changes, and then overwriting the exist-
ing records with the results of these computations. This approach
presented several fundamental problems. It often turned fairly sim-
ple business logic into complex queries with joins and aggregations,
increasing the probability of bugs or unhandled edge cases. The
need to rewrite entire partitions required processing large volumes
of unmodified data even when minimal changes were being made,
making such transformations profoundly inefficient and resource-
intensive. As a result, data engineers frequently found themselves
managing cluster workloads and optimizing shuffles. The process
of replacing partitions was also inherently unsafe, as concurrent
modifications could silently corrupt the table. Partition replace-
ments often required a separate external locking mechanism that
had to be honored by all writers but could not be enforced by the
underlying metadata layer. Readers were required to participate
in this locking scheme resulting in degraded query performance.
Nearly all query engines chose to avoid this approach because of
the added complexity and performance implications.

While neither Iceberg nor Spark initially supported row-level
operations, they possessed a set of features key to adding such
functionality. Iceberg provided a commit protocol based on seri-
alizable snapshot isolation [35], supported atomic file swaps, and
had a mechanism to track diverse metadata structures for each
version of the table. Spark could reliably handle tens of petabytes
of data and supported advanced database features like adaptive
execution and runtime filtering. These capabilities made Iceberg
and Spark particularly well-suited for incorporating support for
DELETE, UPDATE, and MERGE commands.

The primary contributions of this paper are the foundational
design of Iceberg and extensions to Spark that enable efficient
petabyte-scale row-level operations. Section 2 starts with an over-
view of Iceberg and its metadata layout. This section concerns
work done both by the authors of this paper as well as contribu-
tions from others in the Iceberg community. It also discusses the
requirements and constraints that drove the more recently added
support for row-level operations. Section 3 presents different ways
to encode changes in Iceberg, allowing the table format to handle

both high-density and sparse updates in batch as well as stream-
ing applications. We explain how Iceberg plans jobs, implements
differential structures, resolves write conflicts, and performs table
maintenance. Section 4 describes Spark enhancements required to
support row-level operations and achieve the desired query per-
formance. Section 5 covers evaluation setup, results, and analysis.
Sections 6 and 7 outline future and related work.

2 BACKGROUND
2.1 Iceberg Metadata
The Iceberg project consists of a formal specification [10] defin-
ing the structure, behavior, and operations supported by the table
format, and a set of libraries that implement the spec in different
programming languages such as Java [9] and Python [12].

The Iceberg metadata layout (Figure 1) is a persistent tree data
structure. The state of an Iceberg table is prescribed by a catalog
mapping an identifier to a specific root metadata file. Modifications
to the table, such as adding data files or updating properties, result
in the creation of a new metadata tree under a new root metadata
file. This new revision is committed via an atomic swap, updating
the pointer in the catalog to the new metadata file. This process
ensures that the new metadata is always based on the latest version,
thereby maintaining a linear history, as each root metadata file
is replaced exactly once. The metadata file contains information
about various aspects of the table, including its schema, partition
specs, sort order, properties, and a list of valid snapshots [10].

A snapshot of a table provides a read-only view of its data at a
given point in time. It contains a complete listing of all files required
to read the table. Readers maintain isolation by only using the files
from a single snapshot when scanning the table. Data files in a
snapshot are tracked by one or more manifest files that capture
diverse information about data files such as their location, column
statistics, and partition values. Manifests are not bound to specific
partitions and can belong to multiple snapshots to avoid rewriting
unchanged metadata. This key design principle enables Iceberg
to quickly produce a new snapshot by inheriting all unchanged
metadata. Iceberg indexes manifests for a snapshot in amanifest list
file, enabling quick navigation through large chunks of metadata
without the need for a distributed query engine. If the manifest
skipping is not effective and an operation requires processing a
large number of manifests, query engines can also leverage cluster
resources by sending manifest metadata directly to compute to be
read and evaluated remotely. Currently Spark uses this technique
for distributed maintenance and planning. In the future, similar
capabilities can be added for commits.

Every Iceberg commit can be seen as a series of actions, such
as adding or removing data files, and a set of requirements, such
as not finding any new data matching a predicate. The commit
operation only succeeds if all applicable requirements are met, en-
suring the table always transitions from one valid state to another.
Each commit attempt creates a new metadata tree that will replace
the current one. If the table state has changed during the action,
the commit attempt fails and must be retried. Iceberg’s metadata
layout enables each retry to reuse all applicable work from ear-
lier commit attempts. If a concurrent operation alters the table in
a way that invalidates the pending commit, Iceberg discards the



pending metadata and reapplies all actions on top of the new base
table version, making the retry process transparent to the user. The
Iceberg spec imposes no isolation requirements and permits com-
mitting new table versions as long as they are coherent. However,
Iceberg libraries provide mechanisms for query engines to main-
tain diverse levels of isolation, such as serializable or snapshot. The
isolation levels are configured for each operation type (e.g. DELETE
or MERGE) at the table level with the ability to override that con-
figuration for particular invocations. Iceberg validates that changes
meet isolation level requirements before allowing a commit. This
can be used as a building block for multi-table transactions, but
will require corresponding changes in catalogs and query engines.
Instead of two-phase locking and serial execution, Iceberg relies
on optimistic concurrency and does not require readers and writ-
ers to acquire locks. Serializable isolation is achieved by detecting
snapshot isolation anomalies at commit time, as discussed in [35].

When planning a scan, Iceberg first determines which snapshot
of the table must be read and finds all relevant manifests, pruning
them based on partition summaries stored in the manifest list file.
Iceberg then, either locally or remotely, scans these manifests to
find matching data files, evaluating the scan predicate against the
partition values and column statistics of each data file. The outcome
of this step is a set of file scan tasks that are further split and grouped
according to the desired split size.

Iceberg also allows tables to be partitioned on a subset of columns
so similar rows can be clustered together which improves query per-
formance through partition pruning. Unlike Hive, Iceberg adopts a
technique called hidden partitioning, which decouples the values
used for partitioning from actual column values. This is achieved
via partition transforms [22] which are invoked transparently dur-
ing reads or writes. Partition transforms are similar to generated
columns since the transform output is derived from other column
values. All valid partition transform are explicitly defined in the Ice-
berg spec for consistent implementation between engines. Consider
the following SQL statements using partition transforms:

CREATE TABLE my_table (
id BIGINT,
data STRING,
ts TIMESTAMP)

USING iceberg
PARTITIONED BY (bucket(16, id), days(ts));

SELECT data FROM my_table WHERE id = '42'
AND ts >= '2024-03-01 12:00:00';

In the above example, my_table is partitioned on two columns, id
and ts, with partition transforms bucket and days respectively.
Iceberg transparently clusters rows being written into this table
after evaluating the transforms on the column values. During reads,
Iceberg also uses the transforms to decide which partitions need to
be read. Users can express filters without knowing how the rows
are clustered, and Iceberg will transform those filters to match the
partitioning. For instance, given a timestamp column ts partitioned
by hour(ts), a filter on a timestamp column ts will be automati-
cally converted to a filter on hour(ts) internally. Iceberg tables can
have multiple partition specs, allowing the partitioning to evolve
without the need for rewriting data files.

catalog

V1 metadata file

 

V2 metadata file

 

S0 manifest list S1 manifest list

ADDED, file1.parquet
ADDED, file2.parquet

manifest A

ADDED, file3.parquet
ADDED, file4.parquet

manifest B

S0 S0 S1

Figure 1: Iceberg metadata

2.2 Requirements and Constraints
There were multiple constraints and requirements that affected the
design of row-level operations in Iceberg and Spark:

• ACID transactions with a configurable isolation level. Our
primary target was online analytical processing (OLAP) use cases
with a limited number of concurrent writers and many concur-
rent readers. Supporting millions of transactions per minute that
modify a few records, common in online transaction processing
(OLTP), was beyond the scope of this work.

• Ability to handle tens of petabytes of highly-compressed
columnar data in a single table. Integrating support for row-
level operations must have been achieved without compromising
scalability.

• Read and write-optimized ways to handle changes, similar
to projects like C-Store [55]. The solution had to support daily
batch jobs targeting a large portion of records in a subset of table
partitions, hourly micro-batches modifying a small set of records,
and streaming upserts.

• No long-running processes holding differential structures
in memory. Write-intensive databases frequently leverage data
structures like LSM-trees [52] to buffer incoming changes in
memory and periodically offload them to disk. This technique
allows them to incorporate a fast write store to sustain a high
frequency of updates and a larger read-optimized store on disk
for compressed and compacted data. While we realized the need
for differential structures like Positional Delta Trees [48] to han-
dle sparse updates, it was important to avoid an in-memory
component because of the complexity associated with ensuring
durability and consistency.

• Ability to sort the data according to a user-defined sort
order. Iceberg allowed users to configure a sort order for writes
and kept lower and upper bounds for columns to skip irrelevant
data files during planning. It was important to preserve this
functionality for fast selective queries and not be tempted to order
records in a way that is better suitable for handling changes.



• Must be compatible with existing file formats like Apache
Avro [2], Apache Parquet [4], and Apache ORC [3]. Devel-
oping a custom file format would harm the adoption and require
lots of resources to maintain.

• No extra information in data files.We preferred to rely on
implicit row IDs to not increase the storage footprint [30], as
opposed to solutions that store extra metadata adjacent to data
columns.

• SQL support forDELETE,UPDATE, andMERGE commands.
Our goal was to hide the complexity that comes with row-level
operations behind a standard SQL API. We also aimed to inte-
grate the support for row-level operations into Spark’s analyzer
and optimizer. This was required to provide a clear view of how
such operations would be executed and to perform advanced
optimizations.

3 ICEBERG ROW-LEVEL OPERATIONS
We extended Iceberg to support three ways to encode row-level
mutations, with the ability to combine them in a single table. This
flexibility allows users to pick the right set of trade-offs for each
workload. Each method can be thought of as several distinct phases:
planning, scan, write, and commit.

3.1 Eager Materialization
Iceberg can eagerly materialize changes by rewriting and swapping
data files that need to be modified, similar to block replacements in
BigQuery [44] and micro-partition overwrites in Snowflake [27].
This strategy is internally called copy-on-write, following the nam-
ing convention in projects like VectorH [39]. The primary advantage
of such materialization lies in its simplicity and absence of addi-
tional overhead during reads. This method is particularly effective
for bulk updates targeting a substantial number of rows across spe-
cific data files, as it allows for the changes to be materialized once at
the time of writing, rather than having each query reconcile differ-
ences with existing data files. The main downside is its inefficiency
in handling sparse updates, as all unmatched rows in modified data
files must be copied over, leading to increased write amplification.
Updating a record in each data file of the table requires rewriting
the entire table, making this strategy impractical for sparse changes
at scale.

3.1.1 Planning. The planning mostly follows the same procedure
as in regular Iceberg queries (see IcebergMetadata). The only impor-
tant difference is tracking additional snapshot information needed
to ensure the configured isolation level.

3.1.2 Scans. Scans in row-level operations that replace data files
have a few notable distinctions compared to normal queries. Query
engines are required to project metadata columns, like partition
or file name, in order to cluster and order records prior to writing.
Column pruning and predicate pushdown beyond file filtering are
also impossible because all unmatched records must be copied in
their entirety into the new snapshot.

3.1.3 Writes. The write phase of the operations involves the cre-
ation of new data files that reflect the changed state of the table.
Although the output data files are no different than the ones pro-
duced by appends, the write process requires special attention.

Poorly managed writes can drastically impact subsequent jobs and
would require an aggressive compaction strategy to maintain stable
query performance. We extended Iceberg with a set of relevant
features to let query engines control different aspects of the write
process. First, Iceberg allows users to configure a sort order for
incoming records to enable efficient data skipping. Query engines
are encouraged but not required to enforce the table sort order.
The metadata for each added file is annotated with its sort order
ID, enabling various read-time optimizations such as skipping un-
necessary sorts during sort-merge joins. Second, Iceberg provides
query engines with optimal instructions on how to distribute and
cluster the data. Third, Iceberg libraries offer two types of file writ-
ers: clustered and fan-out. Clustered writers keep only a single
file handle open at a time but require the input to be ordered by
partition. This type of writer offers predictable memory pressure
but necessitates a local sort prior to beginning. This local sort can
facilitate better compression but is a frequent cause of expensive
data spills from memory to disk. Fan-out writers do not require
a sort and instead keep a file handle open per partition until the
end of the task. This type of writer produces the same number of
files as clustered writers but requires the system to keep more file
handles open during the write.

3.1.4 Commits. Commits produce new snapshots by replacing the
files read in the scan phase with the files created during the write
phase (Figure 2). Commits currently support serializable and snap-
shot isolation. Under serializable isolation, Iceberg validates that no
concurrent modifications have added new records matching the op-
eration condition and that none of the scanned data files have been
removed or have new delete files applied to them (see LazyMaterial-
ization). This ensures that transactions are completely isolated from
one another, serializing their execution. Under snapshot isolation,
Iceberg permits write skew [33]. Commits will still succeed even if
a concurrent operation adds new records that match the operation
predicate as long as all replaced data files have not been removed
and remain unmodified. Iceberg validates isolation by checking
the partition and column statistics of newly added files enabling
operations to concurrently modify the same partitions as long as
it can be proven using the metadata that the concurrent transac-
tions operate on disjoint sets of records. Other isolation levels and
record-level conflict resolution can be added in the future.

3.1.5 Table Maintenance. Tables modified by eagerly rewriting
data files do not require any special maintenance as long as the
engine can apply the table’s distribution and ordering at write
time. Whenever write-time distribution or ordering are not possible,
Iceberg libraries come with support for on-demand bin-packing,
sorting, and multi-dimensional clustering.

3.2 Lazy Materialization
Given that changes can be scattered across all data files and rewrit-
ing the entire table to handle a small set of changes is impractical at
scale, we also added support for lazy materialization. This strategy
is called merge-on-read, a popular term in data lakehouses intro-
duced by Apache Hudi [6]. Iceberg’s data files are immutable so
lazy materialization relies on a variant of differential files [53] to



catalog

V1 metadata file

 

V2 metadata file

 

S0 manifest list S1 manifest list

ADDED, file1.parquet
ADDED, file2.parquet

manifest A manifest B

S0 S0 S1

EXISTING, file1.parquet
DELETED, file2.parquet

manifest A'

ADDED, file3.parquet
ADDED, file4.parquet

manifest B

Figure 2: A row-level operation eagerly materializes changes
by rewriting and replacing file2 from snapshot S0 with file3
and file4 in snapshot S1.

encode differences between existing data files and the newly de-
sired state. These differences must be merged at read time with the
existing data files to get a consistent view of the table. Unlike data
file replacements, this approach required substantial changing of
Iceberg’s metadata layout and adding the concept of delete files.
Delete files contain information about which rows are no longer
present in the table. Updates are represented as a delete followed
by an insert, which is common in columnar databases [55] [34].
While query engines may have an in-memory component to buffer
changes similar to LSM-trees [52], it is not strictly required. Iceberg
supports both position and equality delete files, allowing query
engines to chose the right set of trade-offs for optimal performance.

3.2.1 Sequence Numbers. Iceberg determines the applicability of
delete files based on sequence numbers which represent their rel-
ative age. Data and delete files distinguish two types of sequence
numbers: file and data. Each snapshot in a table is assigned a se-
quence number during commit and all manifests, data files, and
delete files created for the snapshot implicitly inherit its sequence
number as their file sequence number. The file sequence number
can then be used for incremental processing and table maintenance.
The data sequence number exists to indicate the age of the content
of the file. This allows table maintenance operations to replace ex-
isting files while still retaining metadata about when the contents
was originally added to the table. The data sequence number can
be used to limit the scope of delete files regardless of whether the
file was added by a write or was the result of compaction. Sequence
numbers are assigned via inheritance and do not cause contention.

3.2.2 Position Delete Files. A position delete file consists of a list
of files and the row positions within those files that have been
deleted. All position delete files are scoped to a particular partition
and may have either file or partition granularity. Under partition
granularity, writers group deletes for multiple data files within
a partition into one delete file (Figure 3). This strategy tends to
reduce the total number of delete files in the table. However, a

ID DEP YEAR

101

102

103

hr

hr

hr

2001

2018

2005

ID DEP YEAR

201

202

203

hr

hr

hr

2021

2003

2009

data1.parquet

data2.parquet

FILE_PATH POS

data1.parquet 0

2

1
pos-deletes.parquet

data1.parquet

data2.parquet

Figure 3: Partition-scoped position delete file

ID DEP YEAR

101

102

103

hr

hr

hr

2001

2018

2005

ID DEP YEAR

201

202

203

hr

hr

hr

2021

2003

2009

data1.parquet

data2.parquet

FILE_PATH POS

data1.parquet 0

2

1
pos-deletes2.parquet

data1.parquet

data2.parquet

pos-deletes1.parquet

FILE_PATH POS

Figure 4: File-scoped position delete files

scan for a single data file will require reading delete information
for multiple data files even if those other files are not required
for the scan. Irrelevant deletes will be discarded but fetching this
extra information will cause overhead. Under file granularity, delete
writers always create a separate delete file for eachmodified data file
(Figure 4). This strategy ensures only information required to read
a data file will be loaded during a scan. However, it also increases
the total number of delete files in the table and may require a more
aggressive approach for delete file compaction. A position delete
file must be applied to a data file if its data sequence number is
greater than or equal to the data file’s data sequence number. This
allows writing delete files that are committed simultaneously with
data files they modify, which helps when a single batch of changes
contains multiple modifications for the same row.

3.2.3 Equality Delete Files. An equality delete file marks a row as
deleted by referencing one or more column values, which identify
rows that have to be removed (Figure 5). Equality delete files can
be global or limited to particular partitions and store either entire
deleted rows or just identity columns. Iceberg keeps track of identity
columns for each equality delete file, allowing row-level operations
to use different sets of columns to identify deleted rows. Iceberg
also always stores lower and upper bounds for identity columns to
facilitate file filtering during planning. An equality delete file must
be applied to a data file if its data sequence number is strictly greater
than the data file’s sequence number and either their partitions
match or the deletes belong to an unpartitioned spec. The latter
allows having global deletes without the need to produce a delete
file for each partition.



ID DEP YEAR

101

102

103

hr

hr

hr

2001

2018

2005
data1.parquet

ID DEP YEAR

101

102

null

null

null

null
eq-deletes.parquet

Figure 5: Equality delete file

3.2.4 Delete Manifests. Similarly to data files, delete files in a snap-
shot are tracked by one or more manifests. The content of each
manifest (i.e. deletes or data) is persisted in the manifest list file, al-
lowing Iceberg to manage metadata for data and deletes separately.

3.2.5 Planning. The introduction of delete files led to substantial
changes in the planning process. Iceberg employs a two-phase ap-
proach to compute scan tasks if the table contains deletes. First, the
Iceberg library finds delete files that match the operation condition
and builds an in-memory delete file index. Second, Iceberg prunes
data files and adds associations with relevant delete files found in
the first phase. The result of this step is a set of scan tasks with
data files marked with delete files that apply to them.

3.2.6 Scans. The scan phase of lazy materialization does not have
the same limitations as eager materialization. Predicate pushdown
can be applied meaning Iceberg can discard files or parts of the
files that are not being modified. Iceberg can also utilize column
pruning and only needs to project columns that either are part
of the modification condition or are necessary to build the new
state of updated rows. For instance, upserts only need columns for
evaluating the upsert condition as the new state of the rows is fully
derived from the upsert data.

Iceberg supports vectorized reads with position and equality
deletes but the two delete types have different performance impacts
on data file reads. Position deletes are almost always less expensive
than equality deletes. Position deletes are loaded into a Roaring
bitmap [38], a form of compressed bitmap, which acts like a validity
vector. This approach adds minimal overhead to data file reads but
is still sensitive to the number of associated delete files. Equality
deletes are more expensive to apply as readers must compare values
of identity columns in data and delete files. There are multiple
options for applying equality deletes. Readers can load them into
a set and discard all matching data records. Alternatively, query
engines can sort-merge data and deletes if they have the same
sort order. It is also possible to anti-join data and deletes using a
distributed operation.

3.2.7 Writes. In addition to new data files containing updated and
added records, writes also create delete files marking the records no
longer present in the dataset. As in eager materialization, Iceberg
recommends a way query engines can distribute the records to min-
imize the number of output files and provides dedicated clustered
and fan-out delete writers.

3.2.8 Commits. Commits produce new snapshots with added data
and delete files (Figure 6). Under serializable isolation, Iceberg vali-
dates that concurrent modifications do not add new records match-
ing the operation condition, data files referenced by position deletes
are still part of the table, and there are no new deletes for records

catalog

V1 metadata file

 

V2 metadata file

 

S0 manifest list S1 manifest list

ADDED, file1.parquet
ADDED, file2.parquet

manifest A (data) manifest B

S0 S0 S1

ADDED, file3.parquet

manifest B (data)

ADDED, deletes1.parquet
ADDED, deletes2.parquet

manifest C (deletes)

Figure 6: A lazy row-level operation indicates which records
to remove in deletes1 and deletes2 and stores updates and
inserts in file3.

that are being updated. Under snapshot isolation, the validation is
similar except tolerating write skew. Equality deletes never conflict
with data compaction or row-level operations that replace data files,
making them a great choice for streaming applications. Position
deletes, on the other hand, may conflict with a concurrent operation
if that operation removes referenced data files from the table.

3.2.9 Table Maintenance. Lazy materialization demands additional
maintenance not necessary with eager materialization. Procedures
for expiring old snapshots and rewriting manifests have to take
into account both delete and data files. Data compaction needs to
take care of merging and removing obsolete delete files. Delete
files themselves call for new table management procedures. For
instance, position delete files can be compacted together to reduce
read overhead without rewriting data files. This type of compaction
is efficient because it does not require reading data. As of now,
equality deletes cannot be compacted across different sequence
numbers, but they can be converted into position deletes. This
type of compaction is more expensive as it involves reading data
files to determine deleted positions. It is possible to completely
avoid the data and delete compaction by combining lazy and eager
materialization. For instance, a job can execute a series of lazy
operations followed by an eager operation, which would produce a
new set of data files without deletes.

4 SPARK ENHANCEMENTS
Adding support for row-level operations to Spark required new
connector APIs, additional planning components, and performance
optimizations.

4.1 Connector API
Our goal was to create a generic API that would allow Spark to han-
dle row-level changes across different data sources, regardless of
what materialization strategy they support. The existing connector
API provided mechanisms for controlling independent scans and



writes. However, in row-level operations writes depend on scans.
For instance, Iceberg commits must be aware of what snapshot was
scanned and the list of scanned data files to ensure a specific level of
isolation, which is only possible by having access to the scan infor-
mation during writes. To accomplish this we introduced a new API,
RowLevelOperation [16], allowing connectors to coordinate scans
and writes. This API also instructs Spark on what materialization
strategy to use while rewriting DELETE, UPDATE, and MERGE
statements in the analyzer. In the future, we plan to allow Spark
to pick the right materialization approach automatically based on
the nature of each operation. We also designed a set of new writer
APIs for handling updates and deletes [15].

4.2 Runtime Filtering
Query engines frequently leverage runtime filtering [24] to dy-
namically prune data using predicates derived from analyzing or
evaluating segments of the query plan. Spark already incorporated
a few runtime filtering mechanisms, such as dynamic partition
pruning and Bloom filter joins. We designed row-level operations
to benefit from these optimizations, reducing the amount of pro-
cessed and rewritten data. Connectors are able to utilize provided
static filters when planning row-level operation scans. Unfortu-
nately, such data skipping cannot be used in conjunction with
more complex predicates. Complex predicates (e.g., id IN (SELECT
value FROM source)) can only be evaluated in Spark and cannot
be pushed down to connectors for data skipping. Since eagerly
rewriting groups of data is costly, we added new filtering capabili-
ties at runtime. Spark can evaluate a filter subquery to determine
matching groups in the row-level operation scan. The cost of scan-
ning the table multiple times is offset by only projecting columns
required to evaluate the operation condition. This pre-filtering ap-
proach is equivalent to a lookup in an inverted index represented by
another table. This functionality allows Iceberg to only rewrite data
files that actually have matches. Inspired by a similar technique in
Delta Lake [31], our implementation enriches this optimization by
integrating the filtering step into the query execution, facilitating
stage and exchange reuse. We are exploring a similar approach for
plans with lazy materialization but that will require bigger changes
to the runtime filtering framework.

4.3 Executor Cache
Connectors leverage executor-level caches to reduce the computa-
tion and IO overhead in tasks. In Iceberg we cache deletes to avoid
repetitive work, as the same delete file can be read from several
tasks. Caching is most effective when the delete file matches mul-
tiple data files or if different parts of the same data file are being
processed separately. The executor cache has proven to greatly
reduce the overhead of applying delete files during reads and defer
the need for a major data compaction.

4.4 Storage-Partitioned Joins
IO and network communication are often the bottleneck in dis-
tributed parallel processing engines such as Spark [58][54]. In par-
ticular, during a shuffled join operation, Spark requires data to be re-
partitioned, materialized on local disks for better fault tolerance, and
later transmitted across network, so that the join can be divided into

a set of smaller joins for which data is co-located on multiple ma-
chines. To be scalable and performant, the Spark shuffle operation
also often must sort output rows according to the hashed value of
their partition keys and materialize the result into a single file [41].
This process incurs significant overhead if the amount of data to
be shuffled is large.

Traditionally, a co-partitioned join [43][45] is an effective tech-
nique to eliminate shuffle costs. The two tables of a join can be
pre-partitioned based on the join keys, and, as data is co-located, it
does not have to be re-shuffled across the network. Spark includes
a similar idea called bucketing, which is inspired by Hive [36][56].
In the bucketing approach, a table is partitioned based on the hash
of one or more columns into a fixed number of "buckets". A join
operation can avoid shuffling if all the join keys are also bucket
columns for the tables involved in the join, and the number of buck-
ets is exactly the same or one side is a multiple of the other. This
type of join is called a bucket join.

The bucketing approach has several limitations. First, all data has
to be bucketed according to the hash value, and stored physically
the same way as it is bucketed. Specifically in Hive and Spark, data
for a particular bucket needs to reside in a single directory. Both
engines also use different hash functions which makes bucketed
tables maintained by one engine incompatible with another. Second,
the set of join keys must match the full set of bucket columns. For
instance, if two tables are joined on two columns, then both tables
need to be bucketed on those exact two columns. Lastly, bucketing
via hashing can often introduce data skew, where majority of the
data could be concentrated in a few buckets which would bottleneck
the algorithm. These limitations make the bucket approach not
applicable to many use cases.

Storage-partitioned joins [13] (SPJ) generalize bucket joins by
removing the above constraints. Data no longer has to be bucketed
by hash, but instead can be clustered by any mechanism specified
via connector’s partition transform functions [22] registered via
Spark’s function catalog (e.g., days in Iceberg, which converts a
timestamp value into a date value). The set of join keys does not
have to match the full set of partition columns. Instead, Spark will
ensure that partitions from both sides of a join match and can be
co-located to Spark tasks. For instance, when the set of join keys is a
subset of the partition keys, Spark will group partitions based only
on the partition columns that are being used in the join. To illustrate,
in Figure 7, assuming Spark is executing a MERGE operation where
ON condition is on the x column from two tables A and B. Even
though table A is partitioned on column x and y, Spark is able to
group the partitions according to the ON condition, and ensure
data can be co-located to the tasks #0 and #1.

SPJ also doesn’t require transform functions on both sides of a
join to be identical, but only that they are compatible with each
other. In the bucketing case, two bucket functions are considered
compatible if the number of buckets from one is divisible by the
other, and that both use the same hash function. The concept, how-
ever, can also be extended to any transform functions provided by
connectors, such as hours versus days in Iceberg, as long as they
implement corresponding APIs in Spark. When Spark detects that
two transform functions are compatible in a join operation, it uses
the API to convert the partition values from one side of the join to
the other. So far, SPJ allows "coalescing" partition values that are



2020-01-01, 0

MERGE ON A.x = B.x
(Assuming A is partitioned on (x,y) while B is partitioned on (x)

2020-01-01, 1

2020-01-02, 0

2020-01-01

2020-01-02, 1

2020-01-02

A B

task #0

task #1

Figure 7: Partition grouping

2020-01-01

2020-01-02

2020-01-04

2020-01-03

2020-01-01

2020-01-02

2020-01-03

2020-01-04

A B A B

2020-01-01

2020-01-01

2020-01-02

2020-01-03

2020-01-04 
(split 1)
2020-01-04 
(split 2)
2020-01-04 
(split 3)

2020-01-01 
(split 1)
2020-01-01 
(split 2)

2020-01-02

2020-01-03

2020-01-04

2020-01-04

2020-01-04

After partially clustered distribution

Figure 8: Partially clustered distribution

more granular into values that are less granular, e.g., converting an
hour value since epoch time into a day value, and applies grouping
to allow the partitions be co-located to Spark tasks.

Another common issue in original bucket joins is data skew,
where a few tasks need to process the majority of the data, and
therefore bottlenecking performance. This can happen in partic-
ular after applying the partition grouping as described above. To
address this we introduced a new concept called "partially clustered
distribution", where on one side of the join, data doesn’t need to be
fully clustered according to the join keys. Under this mechanism, a
skewed partition can be divided into multiple smaller splits with
each new split is compared against the full partition from the other
side of the join. This improves parallelism because each new split
can be processed independently at the cost of re-reading the oppos-
ing partition. This approach only works for inner joins, left outer
joins when the right side is chosen as the side for splitting, and vice
versa for right outer joins.

To illustrate the above, in Figure 8 table A is skewed on partition
2020-01-04, while table B is skewed on 2020-01-01. After apply-
ing partially clustered distribution, partition 2020-01-04 is divided
into 3 smaller splits, each of which is mapped to the corresponding
partition from table B. Similarly partition 2020-01-01 is divided
into 2 smaller splits, each of which is mapped to the corresponding
partition from table A. This increases both the number of splits as
well as normalizing their size.

4.5 Cardinality Check
The SQL standard requires query engines to validate the cardinality
of MERGE operations. The standard states that if the ON condi-
tion matches a single row from the target table with multiple rows

in the incoming changes, the outcome of the operation is unde-
fined and an exception must be thrown. This validation ensures
correctness but is frequently made optional in implementations
because of the additional overhead [20]. In our implementation
the operator performing the merge of target and incoming records
always validates the cardinality. Because all matches for a given
row in the target table must be in the same task, the check can be
done locally without distributed computation and can avoid the
overhead of other implementations. Our approach uses an exist-
ing expression in Spark for generating unique 64-bit integer row
IDs to track matches. The initial implementation pre-sorted each
partition of the joined dataset by the synthetic row ID and then
checked for duplicates while emitting merged rows. The local sort
performed poorly and led to costly spills to disk. We switched to
using a compressed bitmap instead, bypassing the local sort and
reducing the memory footprint.

4.6 Adaptive Writes
Significant effort was invested in allowing connectors to control
various aspects of the writing process, as it is the most resource-
intensive phase of any row-level operation and significantly impacts
the performance of subsequent queries. We extended the connector
API with the ability to request a specific distribution and ordering
for incoming data. Three distribution types are supported: ordered,
clustered, and unspecified. The ordered distribution instructs Spark
to range-partition the data being written according to a given list of
ordering expressions. This type of distribution handles data skew
and ensures ordering across output files for efficient queries but
requires expensive sampling to perform. The clustered distribution
guarantees that records sharing the same values for the clustering
expressions are co-located to the same task. This type of distri-
bution is implemented using hash-based shuffles that are cheaper
than range-based shuffles but may lead to less optimal data local-
ity compared to the ordered distribution. Finally, the unspecified
distribution covers scenarios when the data should be passed to
connectors as is. Each distribution offers unique advantages and
can reference both data and metadata columns. We also fully inte-
grated the writing process into Spark’s adaptive query execution
framework. This allowed row-level operations to adjust the degree
of parallelism based on statistics gathered at runtime and produce
properly sized output files even if there was data skew.

5 EVALUATION
This section examines the efficiency of encoding changes and the
impact on query performance of each materialization strategy. We
populated the store_sales table from the TPC-DS benchmark
with 2.8B records (scale factor 1000) and evaluated three upsert-
like pipelines with various percentages of updated records. Each
pipeline consisted of 10 consecutive upsert operations to assess
the stability of write performance. We also repeatedly executed
a simple aggregate query between the iterations to measure the
read performance degradation. We explicitly chose a query that
would be maximally sensitive to differences in table scan speeds.
More complicated queries would be less impacted as the portion
of time actually reading the underlying data becomes a smaller
fraction of the total query time. For writes we report the time



taken for the operation. For reads we show the average query
time of five executions after excluding the min and max times. We
partitioned the target table by bucket(256, ss_ticket_number)
and consumed changes from a temporary table with a compatible
partitioning in order to benefit from storage-partitioned joins. In
future releases, Spark will be able to apply a compatible partitioning
on the fly. We also configured Spark to use hash joins to avoid
expensive local sorts. We ran our benchmarks with Spark 3.5.1 and
Iceberg 1.5.0 (with PR [23] to fix system predicate pushdown) on an
EKS cluster of 8 nodes with 16 cores and 64GB RAM per node. File
system tables were used via the Hadoop Catalog API in Iceberg.

5.1 Streaming Operations
Figure 9 (a) shows how different materialization strategies han-
dled a streaming scenario with sparse and infrequent modifications.
Each iteration contained 25 updates and 25 new records for every
partition of the table (Case 1). Equality deletes offered the fastest
way to encode the changes with constant write performance across
iterations because differences were produced without scanning the
target table. The implementation relying on position deletes also
performed well but writes took longer and became slower with
each iteration. This is expected as the operations required reading
the target table to find affected positions and the number of files
in the table increased with each iteration. The eager materializa-
tion approach was the slowest option for encoding the changes
but the write time was constant across iterations. The read query
time (Figure 9 (b)) slowly degraded under both lazy materialization
strategies as the number of files containing differences increased
(Figure 10). Each iteration contained updates and inserts for all
partitions of the table and produced a data and a delete file per
partition. In a production environment the data and delete files
containing differences would have to be periodically rewritten and
eventually compacted with the base data to restore performance.
The eager approach preserved the original query performance (i.e.,
query time before any data modification is made: iteration=0) and
would not require any table maintenance.

5.2 Micro-Batch Operations
Figure 11 (a) depicts a micro-batch pipeline where each operation
contained 28M updates and around 6.5K inserts that were evenly
distributed across all 256 buckets of the table (Case 2). The lazy
materialization approaches significantly outperformed eager mate-
rialization during writes. In both the streaming and micro-batch
use cases the eager strategy modified the exact same set of data
files causing performance to be identical even though the num-
ber of modifications increased. Read performance of the lazy ap-
proaches was worse than the eager approach. Figure 11 (b) shows
the rapidly increasing cost of applying equality deletes during reads.
This accumulation of equality delete files would require frequent
compactions to restore performance. The implementation using
position deletes caused a much smaller degradation during reads,
and its write performance was still almost 7 times faster than the
eager implementation even after 10 iterations without any table
maintenance. Figure 12 shows the cost and impact on query perfor-
mance of a minor compaction of position deletes after 10 iterations.
The compaction took only 23% of the time required for a single

eager iteration and decreased the read query time by 45%. After the
compaction the query time was only 14% slower than the 0th itera-
tion even though the table still contained more than 80M deletes.
Minor compaction is limited in its ability to restore performance
and eventually delete files must be merged into the base data files
with major compaction. Use cases which modify the majority of
data files in the table can avoid major compaction by switching
from the lazy to the eager approach for one iteration of updates.
Minor compaction for equality deletes is not yet supported in the
Iceberg connector for Spark so it was not examined.

5.3 Batch Operations
Figures 13 (a) (b) represent a batch scenario where an iteration con-
tained 137.5M updates and around 6.5K inserts that applied to only
25 out of 256 partitions, meaning each operation updated around
50% of all records in a subset of partitions (Case 3). While write
performance of the eager approach was relatively constant, the
lazy approach degraded proportionally to the cumulative amount
of changes, leading to the inversion in their relative performance.
Read performance with position deletes degraded faster than in the
previous two use cases because of the increased volume of deletes in
a small subset of partitions. The approach with equality deletes was
excluded from the comparison because the Iceberg connector for
Spark currently leverages a predicate-based approach for applying
equality deletes, making it too resource-intensive for this use case.

5.4 Storage-Partitioned Joins
Figure 14 shows the impact of SPJ on write performance in 1st itera-
tion of Case 1 (Figure 9 (a)). Both the eager and lazy materialization
approaches show roughly an order of magnitude improvement in
write performance with SPJ enabled. Row-level operations require
shuffling the target and source tables so enabling SPJ improves
write performance. We also observed that disabling SPJ required
manually tuning the Spark advisory shuffle partition size to avoid
creating undersized files. Enabling SPJ not only improved write
performance but also facilitated stability.

5.5 Runtime Filtering
Figure 15 shows the impact of runtime file filtering during row-
level operations. A small number of eagerly materialized updates
were applied to only 25% of data files in the table (Case 4) with
runtime filtering both enabled and disabled. The command did not
contain any static predicates that could be pushed down during
planning, highlighting the importance of dynamically determining
the minimal set of files to rewrite at runtime. This use case was
executed with only 32 cores in the cluster.

5.6 Summary
Our evaluation highlights the importance of supporting multiple
ways to encode changes to efficiently handle diverse use cases. Lazy
materialization with equality deletes is the best way to handle very
sparse modifications in upsert operations as the differences can be
produced without scanning the target table. Encoding 100 modifi-
cations in tables with 1GB or 10PB will require the same amount
of resources during writes. Position deletes are much cheaper to
apply during reads but require query engines to find positions of



10

30

100

1 2 3 4 5 6 7 8 9 10
Iteration

W
rit

e 
Ti

m
e 

(s
ec

on
ds

, l
og

 s
ca

le
)

Strategy eager lazy (equality) lazy (positions)

(a) Writes

16

18

20

22

24

0 1 2 3 4 5 6 7 8 9 10
Iteration

Q
ue

ry
 T

im
e 

(s
ec

on
ds

)

Strategy eager lazy (equality) lazy (positions)

(b) Reads

Figure 9: Write and read time (Case 1)

256 256 256

768

256

1280

256

1792
Iteration 0 Iteration 1 Iteration 2 Iteration 3

eager lazy eager lazy eager lazy eager lazy

0

0.5K

1.0K

1.5K

Materialization Strategy

N
um

be
r o

f F
ile

s

Strategy eager lazy File Type delete data

Figure 10: Growth of file count (Case 1)

deleted and updated rows during writes. This materialization is
best suited for micro-batch operations where each iteration tar-
gets a small percentage of rows across a large number of data files.
Both delete types require additional table maintenance but position
deletes can sustain a much higher percent of modifications before
requiring any compaction. Eager materialization is well suited to
daily bulk operations that target a large portion of the table. It does
not impact query performance and does not require any special
table maintenance. We also demonstrate that without key Spark
optimizations these operations would take an order of magnitude
longer. Introducing storage-partitioned joins, coupled with hash

joins, eliminated sorts and shuffles and unlocked highly performant
row-level operations.

6 FUTUREWORK
The current solution is widely deployed in production with tables
containing tens of petabytes of data and tens of millions of files but
there are some important areas for future work:

• Ease of use. We are working on enabling various optimizations
such as storage-partitioned joins and runtime filtering seamlessly.
We also plan to enhance the adaptive query execution in Spark
to automatically pick an optimal advisory shuffle size for final
writes. These changes will reduce the tuning required to achieve
the desired performance.

• Hybrid materialization. Iceberg allows query engines to com-
bine eager data file rewrites with adding position and equality
deletes in one transaction. Our goal is to leverage this function-
ality in Spark to handle row-level operations that are dense in
one subset of files and very sparse otherwise. In addition the
selection of algorithm used for materialization can be determined
automatically at runtime, removing any user configuration.

• Multi-table transactions. While Iceberg provides ways to en-
sure that changes in single table adhere to specific isolation
requirements, it cannot guarantee the same isolation level for a
DELETE or MERGE operation as a whole without the support
for multi-table transactions in query engines and catalogs.

• Secondary indexing. We are actively exploring different ways
to incorporate secondary indexes into Iceberg to further improve
its data filtering capabilities and avoid scanning the target table
to find affected positions in the lazy materialization strategy.

• Alternative representations for position deletes on disk.
Iceberg currently uses Roaring bitmaps [38] to hold position
deletes in memory and delegates the disk representation and
compression to the underlying file format. We are evaluating
options to either persist the Roaring bitmap directly or provide
a custom serialization scheme similar to PFOR [60].



10

30

100

1 2 3 4 5 6 7 8 9 10
Iteration

W
rit

e 
Ti

m
e 

(s
ec

on
ds

, l
og

 s
ca

le
)

Strategy eager lazy (equality) lazy (positions)

(a) Writes

20

30

40

50

0 1 2 3 4 5 6 7 8 9 10
Iteration

Q
ue

ry
 T

im
e 

(s
ec

on
ds

)

Strategy eager lazy (equality) lazy (positions)

(b) Reads

Figure 11: Write and read time (Case 2)

27.26
23.57

0

10

20

30

40

write query

Iteration 10

Ti
m

e 
(s

ec
on

ds
)

38.70

16.29

0

10

20

30

40

rewrites query

Compaction (Minor)

Ti
m

e 
(s

ec
on

ds
)

19.76
17.17

0

10

20

30

40

write query

Iteration 11

Ti
m

e 
(s

ec
on

ds
)

Figure 12: The cost and impact on query performance of a
minor compaction of position deletes (Case 2)

• Enhanced runtime filtering.We plan to extend the runtime
filtering capabilities for approaches that work with deltas of rows
to support Parquet row group and page filtering, which is not
possible with eager data file rewrites.

• Native execution. We intend to integrate our solution with
Apache DataFusion Comet [19] which is a pluggable Spark exe-
cution engine based on Arrow DataFusion [7], to further speed
up row-level operations with the help of native Parquet readers
and writers as well as highly efficient native Spark execution.

7 RELATEDWORK
VectorH [39] is a SQL-on-Hadoop system that added support for
row-level operations to Hadoop-based data lakes. The solution is
proprietary and requires in-memory differential structures.

Apache CarbonData [5] is another system that supports row-
level modifications in data lakes. The project relies on a custom

file format, implements only position-based lazy materialization
strategy, and lacks serializable isolation.

Hive ACID [17] was an attempt to rethink the table format in
data lakes, focused primarily on Hive and ORC. It relies on delta
files and requires all records to be sorted by a synthetic key, which
is persisted in data files next to user-defined columns, making
indexing hard as all tables have a fixed clustering layout not aligned
with query patterns. This table format heavily depends on the Hive
metastore and maintains only snapshot isolation. Because of these
limitations, newer Hive versions adopted Iceberg and support its
eager and lazy materialization strategies [25].

ApacheHudi [6]was specifically designed for updates and deletes
in Hadoop. It introduced copy-on-write and merge-on-read terms
to data lakes. Similar to Hive, the project was initially focused on
HDFS and depended on the list operation in the underlying stor-
age. Hudi supports eager and equality-based lazy materialization.
However, these strategies cannot be mixed in the same table.

Delta Lake [31] originally supported only data file replacement,
until the recent addition of delete vectors, a form of position-based
lazy materialization. The eager and position-based lazy materializa-
tion approaches in Delta Lake and Iceberg are similar. We designed
the Spark extensions so that they can be used by both systems. Delta
Lake supports snapshot, write serializable, and serializable isola-
tion. Row-level operations in Delta Lake are executed as a sequence
of separate actions and are not integrated with the analyzer and
optimizer in Spark, which makes debugging the execution hard and
prohibits some advanced optimizations like stage or exchange reuse
during runtime filtering. The open source version of the project
also has limitations such as no support for subqueries in DELETE
and UPDATE commands [14]. While Delta Lake does not yet sup-
port storage-partitioned joins, the proprietary Databricks Runtime
offers low shuffle MERGEs [26] to reduce the amount of shuffled
data. Unlike Iceberg, Delta Lake relies on storage’s list operation to
determine the last version file in the transaction log, which requires
performant and consistent lists operations [11].



60

70

80

90

1 2 3 4 5 6 7 8 9 10
Iteration

W
rit

e 
Ti

m
e 

(s
ec

on
ds

)

Strategy eager lazy (positions)

(a) Writes

20

40

60

0 1 2 3 4 5 6 7 8 9 10
Iteration

Q
ue

ry
 T

im
e 

(s
ec

on
ds

)

Strategy eager lazy (positions)

(b) Reads

Figure 13: Write and read time (Case 3)

0

1000

2000

3000

OFF ON
SPJ

W
rit

e 
Ti

m
e 

(s
ec

on
ds

)

(a) Eager

0

20

40

60

80

OFF ON
SPJ

W
rit

e 
Ti

m
e 

(s
ec

on
ds

)

(b) Lazy (positions)

Figure 14: Impact of SPJ on write performance (Case 1)

0

200

400

600

OFF ON
Runtime Filtering

W
rit

e 
Ti

m
e 

(s
ec

on
ds

)

Figure 15: Impact of runtime-filtering (Case 4)

Recent studies [49] [37] within the research community have
compared row-level operations in data lakehouses. Both papers
found that Spark produced a bigger number of output files when

executing Iceberg operations leading to worse read performance
after modifying the table. While these studies uncovered issues in
the default Iceberg and Spark configurations, they did not delve into
the underlying reasons for the observed issues or discuss whether
the performance could be improved by configuring the table format
or query engine. The performance degradation could be attributed
to Spark’s adaptive query execution framework selecting an in-
adequately small shuffle partition size for final writes [18], or to
the table being set up with a suboptimal distribution mode [21].
Delta Lake and Hudi don’t support adaptive writes so they were not
affected by the current limitation of the adaptive query execution
framework in Spark. Our evaluation addresses the configuration
issue and focuses exclusively on Iceberg and Spark to highlight the
full potential of these technologies.

ACKNOWLEDGMENTS
We would like to thank both the Iceberg and Spark communities for
their valuable feedback and code contributions: Dongjoon Hyun,
Wenchen Fan, Huaxin Gao, Liang-Chi Hsieh, Dan Weeks, Owen
O’Malley, Jacques Nadeau, Pavan Lanka, Jack Ye, Zheng Hu, Do-
minique Brezinski, Anirban Goswami, Huaxiang Sun, Karuppayya
Rajendran, Anurag Mantripragada, Thiru Paramasivan, Miguel Mi-
randa, and Cristian Opris. We also wish to extend our thanks to
Scott Andreas, Lindsay Hislop, Russ Webb, and Pavan Lanka for
their thoughtful review of our manuscript, their invaluable sugges-
tions, and for coordinating the publication process.



REFERENCES
[1] 2006. Apache Hadoop. Retrieved February 2, 2024 from https://hadoop.apache.org
[2] 2009. Apache Avro. Retrieved February 2, 2024 from https://avro.apache.org
[3] 2013. Apache ORC. Retrieved February 2, 2024 from https://orc.apache.org
[4] 2013. Apache Parquet. Retrieved February 2, 2024 from https://parquet.apache.org
[5] 2016. Apache CarbonData. Retrieved Feb 2, 2024 from https://carbondata.apache.

org
[6] 2016. Apache Hudi. Retrieved February 2, 2024 from https://hudi.apache.org
[7] 2018. Apache DataFusion. RetrievedMay 1, 2024 from https://github.com/apache/

datafusion
[8] 2018. Apache Iceberg. Retrieved February 2, 2024 from https://iceberg.apache.org
[9] 2018. Apache Iceberg Java Library. Retrieved Feb 2, 2024 from https://github.

com/apache/iceberg
[10] 2018. Apache Iceberg Spec. Retrieved Feb 2, 2024 from https://iceberg.apache.

org/spec/
[11] 2019. Delta Lake S3 Writes. Retrieved February 20, 2024 from https://github.

com/delta-io/delta/issues/39
[12] 2020. Apache Iceberg Python Library. Retrieved Feb 2, 2024 from https://github.

com/apache/iceberg-python
[13] 2021. Apache Spark Storage-Partitioned Joins. Retrieved April 12, 2024 from

https://issues.apache.org/jira/browse/SPARK-37375
[14] 2021. Delta Lake DELETE Subquery Support. Retrieved June 9, 2024 from

https://github.com/delta-io/delta/issues/730
[15] 2022. Apache Spark Delta Writer. Retrieved March 25, 2024 from https://github.

com/apache/spark/blob/3bb762dc032866cfb304019cba6db01125556c2f/sql/
catalyst/src/main/java/org/apache/spark/sql/connector/write/DeltaWriter.java

[16] 2022. Apache Spark Row-Level Operation. Retrieved March 25, 2024 from https:
//github.com/apache/spark/blob/3bb762dc032866cfb304019cba6db01125556c2f/
sql/catalyst/src/main/java/org/apache/spark/sql/connector/write/
RowLevelOperation.java

[17] 2023. Apache Hive Transactions. Retrieved June 14, 2024 from https://cwiki.
apache.org/confluence/display/hive/hive+transactions

[18] 2023. Apache Spark Configurable Advisory Partition Size for Writes. Retrieved
July 17, 2024 from https://issues.apache.org/jira/browse/SPARK-42779

[19] 2024. Apache DataFusion Comet. Retrieved June 14, 2024 from https://github.
com/apache/datafusion-comet

[20] 2024. Apache Hive DML Language Manual. Retrieved June 7, 2024 from https:
//cwiki.apache.org/confluence/display/hive/languagemanual+dml

[21] 2024. Apache Iceberg Distribution Modes. Retrieved July 17, 2024 from https:
//iceberg.apache.org/docs/latest/spark-writes/#writing-distribution-modes

[22] 2024. Apache Iceberg Partition Transforms. Retrieved June 14, 2024 from https:
//iceberg.apache.org/spec/#partition-transforms

[23] 2024. Apache Iceberg System Function Pushdown Fix. Retrieved June 7, 2024 from
https://github.com/apache/iceberg/pull/9873

[24] 2024. Apache Impala Runtime Filtering. Retrieved June 7, 2024
from https://docs.cloudera.com/runtime/latest/impala-reference/topics/impala-
runtime-filtering.html

[25] 2024. Cloudera Row-Level Operations. Retrieved July 16, 2024 from
https://docs.cloudera.com/cdw-runtime/cloud/iceberg-how-to/topics/iceberg-
row-level-ops.html

[26] 2024. Delta Lake Low Shuffle MERGE on Databricks. Retrieved June 9, 2024 from
https://docs.databricks.com/en/optimizations/low-shuffle-merge.html

[27] 2024. Snowflake Micro-Partitions. Retrieved June 11, 2024 from https://docs.
snowflake.com/en/user-guide/tables-clustering-micropartitions

[28] Daniel Abadi, Rakesh Agrawal, Anastasia Ailamaki, Magdalena Balazinska,
Philip A Bernstein, Michael J Carey, Surajit Chaudhuri, Jeffrey Dean, AnHai
Doan, Michael J Franklin, et al. 2016. The Beckman report on database research.
Commun. ACM 59, 2 (2016), 92–99.

[29] Daniel Abadi, Anastasia Ailamaki, David Andersen, Peter Bailis, Magdalena
Balazinska, Philip Bernstein, Peter Boncz, Surajit Chaudhuri, Alvin Cheung,
AnHai Doan, et al. 2020. The Seattle report on database research. ACM Sigmod
Record 48, 4 (2020), 44–53.

[30] Daniel Abadi, Peter Boncz, Stavros Harizopoulos, Stratos Idreaos, and Samuel
Madden. 2013. . https://doi.org/10.1561/1900000024

[31] Michael Armbrust, Tathagata Das, Liwen Sun, Burak Yavuz, Shixiong Zhu, Mukul
Murthy, Joseph Torres, Herman van Hovell, Adrian Ionescu, Alicja Łuszczak,
Michał undefinedwitakowski, Michał Szafrański, Xiao Li, Takuya Ueshin,Mostafa
Mokhtar, Peter Boncz, Ali Ghodsi, Sameer Paranjpye, Pieter Senster, Reynold
Xin, and Matei Zaharia. 2020. Delta lake: high-performance ACID table storage
over cloud object stores. Proc. VLDB Endow. 13, 12 (aug 2020), 3411–3424. https:
//doi.org/10.14778/3415478.3415560

[32] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K.
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, andMatei
Zaharia. 2015. Spark SQL: Relational Data Processing in Spark. In Proceedings of
the 2015 ACM SIGMOD International Conference on Management of Data (Mel-
bourne, Victoria, Australia) (SIGMOD ’15). Association for ComputingMachinery,
New York, NY, USA, 1383–1394. https://doi.org/10.1145/2723372.2742797

[33] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick
O’Neil. 1995. A critique of ANSI SQL isolation levels. SIGMOD Rec. 24, 2 (may
1995), 1–10. https://doi.org/10.1145/568271.223785

[34] Peter A. Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-
Pipelining Query Execution. In Conference on Innovative Data Systems Research.
https://api.semanticscholar.org/CorpusID:1379707

[35] Michael J. Cahill, Uwe Röhm, and Alan D. Fekete. 2009. Serializable isolation
for snapshot databases. ACM Trans. Database Syst. 34, 4, Article 20 (dec 2009),
42 pages. https://doi.org/10.1145/1620585.1620587

[36] Jesús Camacho-Rodríguez, Ashutosh Chauhan, Alan Gates, Eugene Koifman,
Owen O’Malley, Vineet Garg, Zoltan Haindrich, Sergey Shelukhin, Prasanth Jay-
achandran, Siddharth Seth, Deepak Jaiswal, Slim Bouguerra, Nishant Bangarwa,
Sankar Hariappan, Anishek Agarwal, Jason Dere, Daniel Dai, Thejas Nair, Nita
Dembla, Gopal Vijayaraghavan, and Günther Hagleitner. 2019. Apache Hive:
From MapReduce to Enterprise-Grade Big Data Warehousing. In Proceedings of
the 2019 International Conference on Management of Data (Amsterdam, Nether-
lands) (SIGMOD ’19). Association for Computing Machinery, New York, NY, USA,
1773–1786. https://doi.org/10.1145/3299869.3314045

[37] Jesús Camacho-Rodríguez, Ashvin Agrawal, Anja Gruenheid, Ashit Gosalia,
Cristian Petculescu, Josep Aguilar-Saborit, Avrilia Floratou, Carlo Curino, and
Raghu Ramakrishnan. 2023. LST-Bench: Benchmarking Log-Structured Tables
in the Cloud. arXiv preprint arXiv:2305.01120 (2023). https://arxiv.org/abs/2305.
01120

[38] Samy Chambi, Daniel Lemire, Owen Kaser, and Robert Godin. 2014. Better
bitmap performance with Roaring bitmaps. Software: Practice and Experience 46
(2014), 709 – 719. https://api.semanticscholar.org/CorpusID:1139669

[39] Andrei Costea, Adrian Ionescu, Bogdan Răducanu, Michał Switakowski, Cristian
Bârca, Juliusz Sompolski, Alicja Łuszczak, Michał Szafrański, Giel De Nijs, and Pe-
ter Boncz. 2016. VectorH: taking SQL-on-Hadoop to the next level. In Proceedings
of the 2016 International Conference on Management of Data. 1105–1117.

[40] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, AllisonW. Lee, AshishMotivala, Abdul Q. Munir, Steven Pelley,
Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. 2016.
The Snowflake Elastic Data Warehouse. In Proceedings of the 2016 International
Conference on Management of Data (San Francisco, California, USA) (SIGMOD
’16). Association for Computing Machinery, New York, NY, USA, 215–226. https:
//doi.org/10.1145/2882903.2903741

[41] Aaron Davidson and Andrew Or. 2016. Optimizing Shuffle Performance in Spark.
Technical Report. University of California, Berkeley.

[42] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing
on large clusters. Commun. ACM 51, 1 (2008), 107–113.

[43] Jens Dittrich, Jorge-Arnulfo Quiané-Ruiz, Alekh Jindal, Yagiz Kargin, Vinay
Setty, and Jörg Schad. 2010. Hadoop++: making a yellow elephant run like a
cheetah (without it even noticing). Proc. VLDB Endow. 3, 1–2 (sep 2010), 515–529.
https://doi.org/10.14778/1920841.1920908

[44] Pavan Edara and Mosha Pasumansky. 2021. Big metadata: when metadata is big
data. Proc. VLDB Endow. 14, 12 (jul 2021), 3083–3095. https://doi.org/10.14778/
3476311.3476385

[45] Mohamed Y. Eltabakh, Yuanyuan Tian, Fatma Özcan, Rainer Gemulla, Aljoscha
Krettek, and John McPherson. 2011. CoHadoop: flexible data placement and
its exploitation in Hadoop. Proc. VLDB Endow. 4, 9 (jun 2011), 575–585. https:
//doi.org/10.14778/2002938.2002943

[46] Goetz Graefe. 2009. Fast Loads and Fast Queries. In Proceedings of the 11th
International Conference on Data Warehousing and Knowledge Discovery (Linz,
Austria) (DaWaK ’09). Springer-Verlag, Berlin, Heidelberg, 111–124. https:
//doi.org/10.1007/978-3-642-03730-6_10

[47] Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza, Rahul Pathak, Ste-
fano Stefani, and Vidhya Srinivasan. 2015. Amazon Redshift and the Case for
Simpler Data Warehouses. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data (Melbourne, Victoria, Australia) (SIGMOD
’15). Association for Computing Machinery, New York, NY, USA, 1917–1923.
https://doi.org/10.1145/2723372.2742795

[48] Sándor Héman, Marcin Zukowski, Niels J. Nes, Lefteris Sidirourgos, and Peter
Boncz. 2010. Positional update handling in column stores. In Proceedings of the
2010 ACM SIGMOD International Conference onManagement of Data (Indianapolis,
Indiana, USA) (SIGMOD ’10). Association for Computing Machinery, New York,
NY, USA, 543–554. https://doi.org/10.1145/1807167.1807227

[49] Paras Jain, Peter Kraft, Conor Power, Tathagata Das, Ion Stoica, and Matei A. Za-
haria. 2023. Analyzing and Comparing Lakehouse Storage Systems. In Conference
on Innovative Data Systems Research. https://api.semanticscholar.org/CorpusID:
259267242

[50] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-
akumar, Matt Tolton, Theo Vassilakis, Hossein Ahmadi, Dan Delorey, Slava
Min, Mosha Pasumansky, and Jeff Shute. 2020. Dremel: a decade of interactive
SQL analysis at web scale. Proc. VLDB Endow. 13, 12 (aug 2020), 3461–3472.
https://doi.org/10.14778/3415478.3415568

https://hadoop.apache.org
https://avro.apache.org
https://orc.apache.org
https://parquet.apache.org
https://carbondata.apache.org
https://carbondata.apache.org
https://hudi.apache.org
https://github.com/apache/datafusion
https://github.com/apache/datafusion
https://iceberg.apache.org
https://github.com/apache/iceberg
https://github.com/apache/iceberg
https://iceberg.apache.org/spec/
https://iceberg.apache.org/spec/
https://github.com/delta-io/delta/issues/39
https://github.com/delta-io/delta/issues/39
https://github.com/apache/iceberg-python
https://github.com/apache/iceberg-python
https://issues.apache.org/jira/browse/SPARK-37375
https://github.com/delta-io/delta/issues/730
https://github.com/apache/spark/blob/3bb762dc032866cfb304019cba6db01125556c2f/sql/catalyst/src/main/java/org/apache/spark/sql/connector/write/DeltaWriter.java
https://github.com/apache/spark/blob/3bb762dc032866cfb304019cba6db01125556c2f/sql/catalyst/src/main/java/org/apache/spark/sql/connector/write/DeltaWriter.java
https://github.com/apache/spark/blob/3bb762dc032866cfb304019cba6db01125556c2f/sql/catalyst/src/main/java/org/apache/spark/sql/connector/write/DeltaWriter.java
https://github.com/apache/spark/blob/3bb762dc032866cfb304019cba6db01125556c2f/sql/catalyst/src/main/java/org/apache/spark/sql/connector/write/RowLevelOperation.java
https://github.com/apache/spark/blob/3bb762dc032866cfb304019cba6db01125556c2f/sql/catalyst/src/main/java/org/apache/spark/sql/connector/write/RowLevelOperation.java
https://github.com/apache/spark/blob/3bb762dc032866cfb304019cba6db01125556c2f/sql/catalyst/src/main/java/org/apache/spark/sql/connector/write/RowLevelOperation.java
https://github.com/apache/spark/blob/3bb762dc032866cfb304019cba6db01125556c2f/sql/catalyst/src/main/java/org/apache/spark/sql/connector/write/RowLevelOperation.java
https://cwiki.apache.org/confluence/display/hive/hive+transactions
https://cwiki.apache.org/confluence/display/hive/hive+transactions
https://issues.apache.org/jira/browse/SPARK-42779
https://github.com/apache/datafusion-comet
https://github.com/apache/datafusion-comet
https://cwiki.apache.org/confluence/display/hive/languagemanual+dml
https://cwiki.apache.org/confluence/display/hive/languagemanual+dml
https://iceberg.apache.org/docs/latest/spark-writes/#writing-distribution-modes
https://iceberg.apache.org/docs/latest/spark-writes/#writing-distribution-modes
https://iceberg.apache.org/spec/#partition-transforms
https://iceberg.apache.org/spec/#partition-transforms
https://github.com/apache/iceberg/pull/9873
https://docs.cloudera.com/runtime/latest/impala-reference/topics/impala-runtime-filtering.html
https://docs.cloudera.com/runtime/latest/impala-reference/topics/impala-runtime-filtering.html
https://docs.cloudera.com/cdw-runtime/cloud/iceberg-how-to/topics/iceberg-row-level-ops.html
https://docs.cloudera.com/cdw-runtime/cloud/iceberg-how-to/topics/iceberg-row-level-ops.html
https://docs.databricks.com/en/optimizations/low-shuffle-merge.html
https://docs.snowflake.com/en/user-guide/tables-clustering-micropartitions
https://docs.snowflake.com/en/user-guide/tables-clustering-micropartitions
https://doi.org/10.1561/1900000024
https://doi.org/10.14778/3415478.3415560
https://doi.org/10.14778/3415478.3415560
https://doi.org/10.1145/2723372.2742797
https://doi.org/10.1145/568271.223785
https://api.semanticscholar.org/CorpusID:1379707
https://doi.org/10.1145/1620585.1620587
https://doi.org/10.1145/3299869.3314045
https://arxiv.org/abs/2305.01120
https://arxiv.org/abs/2305.01120
https://api.semanticscholar.org/CorpusID:1139669
https://doi.org/10.1145/2882903.2903741
https://doi.org/10.1145/2882903.2903741
https://doi.org/10.14778/1920841.1920908
https://doi.org/10.14778/3476311.3476385
https://doi.org/10.14778/3476311.3476385
https://doi.org/10.14778/2002938.2002943
https://doi.org/10.14778/2002938.2002943
https://doi.org/10.1007/978-3-642-03730-6_10
https://doi.org/10.1007/978-3-642-03730-6_10
https://doi.org/10.1145/2723372.2742795
https://doi.org/10.1145/1807167.1807227
https://api.semanticscholar.org/CorpusID:259267242
https://api.semanticscholar.org/CorpusID:259267242
https://doi.org/10.14778/3415478.3415568


[51] Guido Moerkotte. 1998. Small Materialized Aggregates: A Light Weight Index
Structure for Data Warehousing. In Proceedings of the 24rd International Confer-
ence on Very Large Data Bases (VLDB ’98). Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 476–487.

[52] Patrick E. O’Neil, Edward Y. C. Cheng, Dieter Gawlick, and Elizabeth J. O’Neil.
1996. The log-structured merge-tree (LSM-tree). Acta Informatica 33 (1996),
351–385. https://api.semanticscholar.org/CorpusID:12627452

[53] Dennis G. Severance and Guy M. Lohman. 1976. Differential files: their applica-
tion to the maintenance of large databases. ACM Trans. Database Syst. 1 (1976),
256–267. https://api.semanticscholar.org/CorpusID:207632057

[54] Min Shen, Ye Zhou, and Chandni Singh. 2020. Magnet: push-based shuffle service
for large-scale data processing. Proc. VLDB Endow. 13, 12 (aug 2020), 3382–3395.
https://doi.org/10.14778/3415478.3415558

[55] Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cherni-
ack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth O’Neil,
Pat O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik. 2005. C-store: a column-
oriented DBMS. In Proceedings of the 31st International Conference on Very Large
Data Bases (Trondheim, Norway) (VLDB ’05). VLDB Endowment, 553–564.

[56] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Ning Zhang, Suresh Antony, Hao Liu, and Raghotham Murthy. 2010. Hive - a
petabyte scale data warehouse using Hadoop. In 2010 IEEE 26th International

Conference on Data Engineering (ICDE 2010). 996–1005. https://doi.org/10.1109/
ICDE.2010.5447738

[57] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012.
Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of the 9th USENIX Conference on Networked Systems
Design and Implementation (San Jose, CA) (NSDI’12). USENIX Association, USA,
2.

[58] Matei Zaharia, Reynold S. Xin, PatrickWendell, Tathagata Das,Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Stoica. 2016.
Apache Spark: A Unified Engine for Big Data Processing. Commun. ACM 59, 11
(oct 2016), 56–65. https://doi.org/10.1145/2934664

[59] Matei A. Zaharia, Ali Ghodsi, Reynold Xin, and Michael Armbrust. 2021. Lake-
house: A New Generation of Open Platforms that Unify Data Warehousing
and Advanced Analytics. In Conference on Innovative Data Systems Research.
https://api.semanticscholar.org/CorpusID:229576171

[60] Marcin Zukowski, Sandor Heman, Niels Nes, and Peter Boncz. 2006. Super-
Scalar RAM-CPU Cache Compression. In Proceedings of the 22nd International
Conference on Data Engineering (ICDE ’06). IEEE Computer Society, USA, 59.
https://doi.org/10.1109/ICDE.2006.150

https://api.semanticscholar.org/CorpusID:12627452
https://api.semanticscholar.org/CorpusID:207632057
https://doi.org/10.14778/3415478.3415558
https://doi.org/10.1109/ICDE.2010.5447738
https://doi.org/10.1109/ICDE.2010.5447738
https://doi.org/10.1145/2934664
https://api.semanticscholar.org/CorpusID:229576171
https://doi.org/10.1109/ICDE.2006.150

	Abstract
	1 Introduction
	2 Background
	2.1 Iceberg Metadata
	2.2 Requirements and Constraints

	3 Iceberg Row-Level Operations
	3.1 Eager Materialization
	3.2 Lazy Materialization

	4 Spark Enhancements
	4.1 Connector API
	4.2 Runtime Filtering
	4.3 Executor Cache
	4.4 Storage-Partitioned Joins
	4.5 Cardinality Check
	4.6 Adaptive Writes

	5 Evaluation
	5.1 Streaming Operations
	5.2 Micro-Batch Operations
	5.3 Batch Operations
	5.4 Storage-Partitioned Joins
	5.5 Runtime Filtering
	5.6 Summary

	6 Future Work
	7 Related Work
	Acknowledgments
	References

